
CARBON-CARBON BOND FORMATION BETWEEN ALKYLATED ALKENES AND ACRYLIC ESTER VIA 2-METHOXYALKYL RADICALS

> Bernd Giese⁺ and Klaus Heuck Institut für Organische Chemie und Biochemie Technische Hochschule Darmstadt Petersenstraße 22, D-6100 Darmstadt, Germany

<u>Summary</u>: Methoxymercuration/demercuration reactions of alkenes $\underline{10}$ in the presence of acrylic ester yield products $\underline{11}$ in a carbon-carbon bond formation reaction.

Reductions of alkylmercuric salts $\underline{1}$ with NaBH₄ in the presence of electron deficient alkenes $\underline{2}$ yield products $\underline{3}$ in a carbon-carbon bond formation reaction¹. In this synthetic method alkyl radicals $\underline{4}$, adduct radicals $\underline{5}$ and hydrogen donors 6^{2} are formed as intermediates. The reason for the formation of $\underline{3}$ is based on the different selectivities of radicals $\underline{4}$ and $\underline{5}^{1,3}$ in the competition reaction with the hydrogen donor $\underline{6}$ and the alkene $\underline{2}$.

With methoxyalkylmercuric salts $\underline{8}$, generated in methoxymercuration reaction⁴⁾ of alkenes (eq. a), products $\underline{9}$ are formed via 2-methoxyalkyl radicals $\underline{7}$ (eq. b)⁵⁾.

Experiments with alkylated alkenes $\underline{10}$ and acrylic ester have now shown, that this two step reaction (eq. a and b) can be carried out in a one flask synthesis (eq. c).

$$CH_{3}OH + \frac{R'C}{R}C + \frac{H_{2}C}{H} + \frac{H_{2}C}{C}CH_{2}CH_{3} + \frac{1}{2} \frac{H_{2}O/Hg(OAc)_{2}}{2} CH_{3}O - C - C - CH_{2} - CH_{2}CO_{2}CH_{3} (c)$$

$$\frac{10}{2} \frac{10}{1} \frac{11}{1} \frac{11}{1}$$

A 1:1 HgO/Hg(OAc)₂ mixture is combined with an equivalent amount of alkene <u>10</u> in methanol. After decolouration of HgO methanol is distilled off and acrylic ester, dissolved in CH_2Cl_2 (10% solution), is added in tenfold excess. The reduction is carried out with an equivalent amount of NaBH(OCH₃)₃ at room temperature (1-3 h). Filtration and distillation yield the products <u>11</u> (Table I). HgO is important, because it neutralizes the acetic acid that is set free during the methoxymercuration and that can reverse addition reaction (a)⁶.

Table I

Overall yields and spectra of products $\underline{11}$ in the methoxymercuration/ demercuration reactions of alkenes $\underline{10}$ in the presence of acrylic ester.

Alk	tenes <u>10</u>		Products <u>11</u>	¹ h-nmr	(δ) IR	(cm ⁻¹)
R	R'	R"	(Yield,%)	со ₂ сн ₃	оснз	^v c=0
Н	Н	н	50	3.67	3.32	1745
н	C4H9	Н	48	3.65	3.29	1745
н	с ₆ н ₅	Н	50	3.63	3.21	1735
н	-(CH ₂) ₃	-	65	3.70	3.30	1750
Н	-(CH ₂)4	-	58	3.66	3.30	1740
CH ₃	с ₃ н ₇	Н	30	3.68	3.14	1745
CH3	н	сн ₃	53	3.66	3.29	1745
сн ₃	сн ₃	Сн3	32	3.67	3.16	1750

The overall yields of the one flask synthesis (c) are with unsubstituted, mono- and 1,2-dialkylated alkenes $\underline{10}$ between 48 and 65%, with 1,1-disubstituted and trialkylated alkenes $\underline{10}$ about 30% (Table I). With tetraalkylated alkenes this synthetic method fails because product mixtures arise.

1831

<u>Acknowledgement</u>. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- 1) B. Giese and J. Meister, Chem. Ber. <u>110</u>, 2588 (1977).
- 2) D.J. Pasto and J.A. Gontarz, <u>J. Am. Chem. Soc.</u> <u>91</u>, 719 (1969);
 J.M. Whitesides and J.S. Filipo, <u>J. Am. Chem. Soc.</u> <u>92</u>, 6611 (1970);
 R.P. Quirk and R.E. Lea, <u>Tetrahedron Lett</u>. <u>1974</u>, 1925.
- 3) B. Giese and J. Meister, <u>Angew. Chem.</u> <u>89</u>, 178 (1977); <u>Angew. Chem. Int. Ed.</u> <u>Engl.</u> <u>16</u>, 178 (1977); B. Giese and J. Meixner, <u>Angew. Chem.</u> <u>91</u>, 167 (1979); <u>Angew. Chem. Int. Ed. Engl.</u> <u>18</u>, 154 (1979).
- W. Kitching in <u>Organometallic Reactions</u> (E. I. Becker and M. Tsutsui),
 Vol. 3, S. 319, Wiley, New York.
- 5) B. Giese and K. Heuck, Chem. Ber. <u>112</u>, 3759 (1979).
- L.G. Makarova in <u>Organometallic Reactions</u> (E.I. Becker and M. Tsutsui),
 Vol. 1, S. 284, Wiley, New York 1970.

(Received in Germany 13 February 1980)